Strong Acids and Bases_

Z Ch 7.1-7.4

END OF WEEK SWITCHING TO HARRIS TEXT

- 7.1 The Nature of Acids and Bases
- 7.2 Acid Strength
- 7.3 The pH Scale
- 7.4 Calculating the pH of Strong Acid Solutions
- 7.6 Bases (just the strong ones)

FRIDAY QUIZ ON CHEMICAL EQUILIBRIUM – some M ACID/BASE

Le Châtelier's Principle – Change P(TConstant)

Law of Mass Action

For aA + bB <=> cC + dD the equilibrium constant *K* is

$$K = \frac{P^c_{\rm C} P^d_{\rm D}}{P^a_{\rm A} P^b_{\rm B}}$$

2) add inert gas (one that does not participate in the chemical equilibrium

Since $P_i = n_i RT/V$, the partial pressures of all gases participating in the equilibrium reaction are unaffected by the presence of the inert gas. Hence so is the equilibrium constant.

Le Châtelier's Principle – Change P(TConstant)

Law of Mass Action

For $aA + bB \ll cC + dD$ the equilibrium constant K is

$$K = \frac{P^c_{\rm C} P^d_{\rm D}}{P^a_{\rm A} P^b_{\rm B}}$$

3) add gaseous reactant or product

Since $P_i = n_i RT/V$, partial pressures of all other gases participating in the equilibrium reaction are unaffected. But *K* would change and it is a constant! Therefore if added gas were a reactant, *K* would decrease unless equilibrium shifts to products => equilibrium must shift to products. Similarly, were the added gas a product, the equilibrium would shift toward reactants.

Le Châtelier's Principle – Change P(TConstant)

Law of Mass Action

For $aA + bB \ll cC + dD$ the equilibrium constant *K* is

$$K = \frac{P^{c}_{C} P^{d}_{D}}{P^{a}_{A} P^{b}_{B}}$$

4) decrease volume by compression (consider 4-fold decrease)

Since $P_i = x_i P_{TOT}$, each P_i in *K* (actually *Q* until new equilibrium established) increases 4-fold. If total # of moles of reactant gases in balanced chemical equation same as total # of moles of product gases then no effect - powers that P_i are raised to in numerator of *K* same as in denominator. Otherwise, a *P* increase shifts equilibrium to side with fewer moles in balanced equation.

Le Châtelier's Principle – Change T (P Constant)

Exothermic reactions gives off heat, endothermic reactions require heat

a) the following reaction is exothermic

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) + heat$

b) the following reaction is endothermic

+ heat $N_2(g) + O_2(g) \rightleftharpoons 2 \operatorname{NO}(g)$

analogy with the stress imposed by adding or removing a gaseous reactant if one were to consider heat as a "reactant" in the case of an endothermic reaction and as a "product" for an exothermic reaction.

Nature of Acids and Bases

Lewis	Brønsted-Lowry	Arrhenius
coordinate	conjugate acid-base pairs	neutralization
covalent bond	$A_1 + B_2 \rightarrow A_2 + B_1$	$H^+ + OH^- \rightarrow H_2O$
(CHEM 118)		

problem: most general

REVIEW FROM FRIDAY

Brønsted-Lowry: Conjugate Acid-Base Pairs

EX 1. For each of the following write the formula of its conjugate.

ACIDS		BASES	
HCI	CI-	NH ₃	NH_4^+
H ₂ O	OH-	H ₂ S	H_3S^+
NH ₃	NH_2^-	NaOH	H ₂ O
CH ₃ COOH	CH ₃ COO ⁻	O ^{2_}	OH⁻
SH⁻	S ^{2–}	CN [_]	HCN

Brønsted-Lowry: Acid-Base Pair Chemistry

acids – proton donors => form a species [acid – H^+] called **conjugate base**

$$\begin{array}{c} H & \stackrel{..}{ \bigcirc : + H } - Cl \longrightarrow \begin{bmatrix} H - \stackrel{..}{ \bigcirc - H } \\ H \end{bmatrix}^{+} + Cl^{-} \\ H \end{bmatrix}$$

strong acid or base often uses reaction arrow $H_2SO_4(aq) + H_2O(l) \longrightarrow HSO_4^-(aq) + H_3O^+(aq)$ Acid Base Conjugate Conjugate acid

reaction when acid dissolved in water

bases – proton acceptors => form a species [base + H⁺] called **conjugate acid**

nonaqueous reaction in liquid ammonia

weak acid or base uses equilibrium arrow

$HCO_3^{-}(aq)$	$+ H_2O(l)$	${\longrightarrow}$	$H_2CO_3(aq)$	+ $OH^{-}(aq)$
Base	Acid		Conjugate acid	Conjugate base

reaction when base dissolved in water

Brønsted-Lowry: Acid-Base Pair Chemistry

two acids competing to give up H⁺ – the stronger acid "wins"

two bases competing for the acidic proton - the stronger base "wins"

EX 3. From the Brønsted-Lowry point of view, which is the stronger acid in the following reaction:

 $H_2SO_4(aq) + HNO_3(aq) \iff HSO_4^-(aq) + H_2NO_3^+(aq)$

Amphoteric Nature of Water

The pH scale in water depends upon this

Autoionization

A self-ionization process which depends upon the amphoteric nature of the solvent. It is exactly this process which defines what acidity and basicity in a particular solvent is (via the autoionization reaction of the solvent).

Strong Acids and Bases to Know

seven strong acids to know			
hydrochloric acid	HCI		
hydrobromic acid	HBr		
hydroiodic acid	HI		
perchloric acid	HCIO ₄		
chloric acid	HCIO ₃		
sulfuric acid	H_2SO_4		
nitric acid	HNO ₃		

soluble strong bases to know		
lithium hydroxide	LiOH	
sodium hydroxide	NaOH	
potassium hydroxide	KOH	
rubidium hydroxide	RbOH	
cesium hydroxide	CsOH	
barium hydroxide	Ba(OH) ₂	

strong bases - all Group I and Group II hydroxides except Be

Acid Strength

acid strength – determined by extent of reaction of acid with water to form $H_3O^+(aq)$, or the extent of its ionization or dissociation, as shown by the magnitude of its equilibrium constant, K_a – then for any hydrogen-containing compound, HA

$$|HA(aq)| + H_2O(I) <=> H_3O^+(aq) + A^-(aq)$$

EQUATION FOR ACIDITY FOR ANY HA

EQUILIBRIUM	Various Ways to Describe Acid Strength			
CONSTANT	Property	Strong Acid	Weak Acid	
$K_{\rm a} = \frac{[\rm H_3O^+][\rm A^-]}{[\rm HA]}$	$K_{\rm a}$ value	$K_{\rm a}$ is large	$K_{\rm a}$ is small	
	Position of the dissociation equilibrium	Far to the right	Far to the left	
	Equilibrium concentration of H ⁺ com- pared with original concentration of HA	$[\mathrm{H^+}] \approx [\mathrm{HA}]_0$	$[\mathrm{H^+}] \ll [\mathrm{HA}]_0$	
	Strength of conjugate base compared with that of water	A ⁻ much weaker base than H ₂ O	A^- much stronger base than H_2O	

Base Strength

B: – generic way of writing a monobasic base (one basic site)

base strength – (aside from Group I and II hydroxides) determined by extent of reaction of base with water to form $OH^{-}(aq)$, or extent of its ionization, as shown by the magnitude of its equilibrium constant, K_{b} – then for any base B:

$$\mathsf{B:}(aq) + \mathsf{H}_2\mathsf{O}(l) < > \mathsf{OH}^-(aq) + \mathsf{BH}^+(aq)$$

EQUATION FOR BASICITY FOR ANY B:

EQUILIBRIUM CONSTANT

[OH⁻][BH⁺]

[B:]

*K*_b =

Various Ways to Describe Base Strength

Property	Strong Base	Weak Base
$K_{\rm b}$ value	either	$K_{\rm b}$ is small
	1) dissociates to give	
Position of the dissociation equilibrium	OH ⁻ ions to the solution	Far to the left
Equilibrium concentration of OH ⁻ com-	or 2) reacts with water	[OH ⁻] « [B:] ₀
pared with original concentration of B:	in either case:	
Strength of conjugate acid compared	$[OH^{-}] = [B:]_{0}$	BH ⁺ much stronger
with that of water		acid than water

Conjugate Acid/Base Pairs

The conjugate base of a weak acid is a weak base. The weaker the acid, the stronger the base. However, if one member of a conjugate pair is weak, so is its conjugate.

The relation between K_a for an acid and K_b for its conjugate base in aqueous solution is $K_w = K_a \times K_b$.

When a strong acid (or base) is added to a weak base (or acid), they react nearly completely.

Water and the pH Scale

water autoionization: $2 H_2O(l) \le H_3O^+(aq) + OH^-(aq)$

 $K_{\rm w} = [H_3O^+][OH^-] = 1.01 \times 10^{-14} (at 25^{\circ}C)$

 $K_{\rm w}$ is an equilibrium constant which depends upon temperature.

pH is temperature dependent

condition	concentrations	pH (only at 25°C)
acidic	[H ₃ O ⁺] > [OH [−]]	pH < 7
neutral	[H ₃ O ⁺] = [OH [−]]	pH = 7
basic	[H ₃ O⁺] < [OH⁻]	pH > 7

Temperature Dependence of K_{w} Temperature (°C) Kw 0.114×10^{-14} 0 0.292×10^{-14} 10 0.681×10^{-14} 20 1.01×10^{-14} 25 1.47×10^{-14} 30 2.92×10^{-14} 40 5.47×10^{-14} 50 9.61×10^{-14} 60

EX 6. $K_w = 2.4 \times 10^{-14}$ at body temperature (98.6°C = 37.0°C). a) What is the hydrogen ion concentration? $K_w = [H_3O^+][OH^-] = x^2 \implies x = [H_3O^+] = \sqrt{K_w} = \sqrt{(2.4 \times 10^{-14})} = 1.5 \times 10^{-7} \text{ M}$ significant figures for logarithms: b) What is the pH? $pH = -\log_{10}[H_3O^+] = -\log_{10}(1.549 \times 10^{-7}) = 6.80989 \implies 6.81$

Water and the pH Scale

other "p" functions:

pH = $-\log_{10}[H_3O^+]$ p $K_a = -\log_{10}K_a$ pOH = $-\log_{10}[OH^-]$ p $K_b = -\log_{10}K_b$ p $K_w = -\log_{10}K_w$ p $K_{sp} = -\log_{10}K_{sp}$

EX 7. Answer each of the following

a) pH = 9.3, $[H_3O^+] = ?$

 $pH = -log_{10}[H_3O^+] \implies [H_3O^+] = 10^{-pH} = 10^{-9.3} = 5.01 \times 10^{-10} \implies 5 \times 10^{-10}$

b) 0.40 moles of Ba(OH)₂ is dissolved in a liter of water, pOH? Ba(OH)(s) \rightarrow Ba²⁺(aq) + 2 OH⁻(aq) => 0.80 M [OH⁻]