Strong Acids and Bases

end of week switching to harris text

7.1 The Nature of Acids and Bases
7.2 Acid Strength

FRIDAY QUIZ ON
CHEMICAL
EQUILIBRIUM - some
M ACID/BASE
7.3 The pH Scale
7.4 Calculating the pH of Strong Acid Solutions
7.6 Bases (just the strong ones)

Le Châtelier's Principle - Change P (T Constant)

Law of Mass Action

For $a A+b B<=>c C+d D$ the equilibrium constant K is

$$
K=\frac{P^{c}{ }_{C} P^{d}{ }_{D}}{P^{a}{ }_{A} P_{B}^{b}}
$$

2) add inert gas (one that does not participate in the chemical equilibrium Since $P_{i}=n_{i} R T / V$, the partial pressures of all gases participating in the equilibrium reaction are unaffected by the presence of the inert gas. Hence so is the equilibrium constant.

Le Châtelier's Principle - Change P (T Constant)

Law of Mass Action

For $a A+b B<=>c C+d D$ the equilibrium constant K is

$$
K=\frac{P^{c}{ }_{C} P^{d}{ }_{D}}{P^{a}{ }_{A} P^{b}{ }_{B}}
$$

3) add gaseous reactant or product

Since $P_{i}=n_{i} R T / V$, partial pressures of all other gases participating in the equilibrium reaction are unaffected. But K would change and it is a constant! Therefore if added gas were a reactant, K would decrease unless equilibrium shifts to products => equilibrium must shift to products. Similarly, were the added gas a product, the equilibrium would shift toward reactants.

Le Châtelier's Principle - Change P (T Constant)

Law of Mass Action

For $\quad \mathrm{a} A+\mathrm{bB}<=>\mathrm{cC}+\mathrm{dD}$ the equilibrium constant K is

$$
K=\frac{P^{c}{ }_{C} P^{d}{ }_{D}}{P_{A}^{a} P_{B}^{b}}
$$

4) decrease volume by compression (consider 4-fold decrease)

Since $P_{i}=x_{i} P_{\text {тот }}$, each P_{i} in K (actually Q until new equilibrium established) increases 4-fold. If total \# of moles of reactant gases in balanced chemical equation same as total \# of moles of product gases then no effect - powers that P_{i} are raised to in numerator of K same as in denominator. Otherwise, a P increase shifts equilibrium to side with fewer moles in balanced equation.

Le Châtelier's Principle - Change T (P Constant)

Exothermic reactions gives off heat, endothermic reactions require heat
a) the following reaction is exothermic

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \quad+\text { heat }
$$

b) the following reaction is endothermic

$$
+ \text { heat } \quad \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)
$$

analogy with the stress imposed by adding or removing a gaseous reactant if one were to consider heat as a "reactant" in the case of an endothermic reaction and as a "product" for an exothermic reaction.

Nature of Acids and Bases

acid: accepts electron pair base: donates electron pair
donates H^{+} accepts H^{+}
produces H^{+} produces OH^{-}

problem: most general
must have H
need aqueous solution

Brønsted-Lowry: Conjugate Acid-Base Pairs

Conjugate acid-base pair

Conjugate acid-base pair

EX 1. For each of the following write the formula of its conjugate.

ACIDS	BASES		
HCl	Cl^{-}	NH_{3}	NH_{4}^{+}
$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{3} \mathrm{~S}^{+}$
NH_{3}	NH_{2}^{-}	NaOH	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	O^{2-}	OH^{-}
SH^{-}	S^{2-}	CN^{-}	HCN

Brønsted-Lowry: Acid-Base Pair Chemistry

acids - proton donors $=>$ form a species [acid $-\mathrm{H}^{+}$] called conjugate base

bases - proton acceptors => form a species [base $+\mathrm{H}^{+}$] called conjugate acid
weak acid or base uses equilibrium arrow

Brønsted-Lowry: Acid-Base Pair Chemistry

two acids competing to give up H^{+}- the stronger acid "wins"

two bases competing for the acidic proton - the stronger base "wins"

EX 3. From the Brønsted-Lowry point of view, which is the stronger acid in the following reaction:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq})<=>\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{NO}_{3}^{+}(\mathrm{aq})
$$

Amphoteric Nature of Water

The pH scale in water depends upon this

Autoionization

A self-ionization process which depends upon the amphoteric nature of the solvent.. It is exactly this process which defines what acidity and basicity in a particular solvent is (via the autoionization reaction of the solvent).

> of water:

Water acting as both an acid and a base

of ammonia:
$\mathrm{NH}_{3}()+\mathrm{NH}_{3}(I)<=>\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{NH}_{2}^{-}(\mathrm{aq})$

conjugate acid conjugate base

Strong Acids and Bases to Know

seven strong acids to know	
hydrochloric acid	HCl
hydrobromic acid	HBr
hydroiodic acid	HI
perchloric acid	HClO_{4}
chloric acid	HClO_{3}
sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
nitric acid	HNO_{3}

soluble strong bases to know	
lithium hydroxide	LiOH
sodium hydroxide	NaOH
potassium hydroxide	KOH
rubidium hydroxide	RbOH
cesium hydroxide	CsOH
barium hydroxide	$\mathrm{Ba}(\mathrm{OH})_{2}$

strong bases - all Group I and Group II hydroxides except Be

Acid Strength

acid strength - determined by extent of reaction of acid with water to form $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$, or the extent of its ionization or dissociation, as shown by the magnitude of its equilibrium constant, K_{a} - then for any hydrogen-containing compound, HA

EQUATION FOR ACIDITY FOR ANY HA

EQUILIBRIUM CONSTANT

$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

Various Ways to Describe Acid Strength

Property	Strong Acid	Weak Acid
K_{a} value	K_{a} is large	K_{a} is small
Position of the dissociation equilibrium	Far to the right	Far to the left
Equilibrium concentration of H^{+}com- pared with original concentration of HA	$\left[\mathrm{H}^{+}\right] \approx[\mathrm{HA}]_{0}$	$\left[\mathrm{H}^{+}\right] \lessdot[\mathrm{HA}]_{0}$
Strength of conjugate base compared with that of water	A^{-}much weaker	A^{-}much stronger
base than $\mathrm{H}_{2} \mathrm{O}$	base than $\mathrm{H}_{2} \mathrm{O}$	

Base Strength

base strength - (aside from Group I and II hydroxides) determined by extent of reaction of base with water to form $\mathrm{OH}^{-}(a q)$, or extent of its ionization, as shown by the magnitude of its equilibrium constant, K_{b} - then for any base B :

EQUATION FOR BASICITY FOR ANY B:

EQUILIBRIUM CONSTANT

$K_{\mathrm{b}}=\underline{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}$
 [B:]

Various Ways to Describe Base Strength

Property	Strong Base	Weak Base
K_{b} value	either 1) dissociates to give	K_{b} is small
Position of the dissociation equilibrium Equilibrium concentration of OH^{-}com- pared with original concentration of B:	OH^{-}ions to the solution or 2) reacts with water in either case:	Far to the left $\left[\mathrm{OH}^{-}\right]$« $[\mathrm{B}:]_{0}$
Strength of conjugate acid compared with that of water	$\left[\mathrm{OH}^{-}\right]=[\mathrm{B}:]_{0}$	BH^{+}much stronger
acid than water		

Conjugate Acid/Base Pairs

The conjugate base of a weak acid is a weak base. The weaker the acid, the stronger the base. However, if one member of a conjugate pair is weak, so is its conjugate.
The relation between K_{a} for an acid and K_{b} for its conjugate base in aqueous solution is $K_{\mathrm{w}}=K_{\mathrm{a}} \times K_{\mathrm{b}}$.

When a strong acid (or base) is added to a weak base (or acid), they react nearly completely.

Water and the pH Scale

water autoionization: $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.01 \times 10^{-14}\left(\text { at } 25^{\circ} \mathrm{C}\right)
$$

K_{w} is an equilibrium constant which depends upon temperature.

pH is temperature dependent

condition	concentrations	$\mathrm{pH}\left(\right.$ only at $\left.25^{\circ} \mathrm{C}\right)$
acidic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	$\mathrm{pH}<7$
neutral	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	$\mathrm{pH}=7$
basic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$	$\mathrm{pH}>7$

Temperature Dependence of $\boldsymbol{K}_{\mathbf{w}}$	
Temperature [$\mathbf{} \mathbf{C}$ 〕	$\boldsymbol{K}_{\mathbf{w}}$
$\mathbf{0}$	0.114×10^{-14}
$\mathbf{1 0}$	0.292×10^{-14}
$\mathbf{2 0}$	0.681×10^{-14}
$\mathbf{2 5}$	1.01×10^{-14}
$\mathbf{3 0}$	1.47×10^{-14}
$\mathbf{4 0}$	2.92×10^{-14}
$\mathbf{5 0}$	5.47×10^{-14}
$\mathbf{6 0}$	9.61×10^{-14}

EX 6. $K_{\mathrm{w}}=2.4 \times 10^{-14}$ at body temperature $\left(98.6^{\circ} \mathrm{C}=37.0^{\circ} \mathrm{C}\right)$.
a) What is the hydrogen ion concentration?

$$
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=x^{2} \Rightarrow>\quad \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ } K_{\mathrm{w}}=\sqrt{ }\left(2.4 \times 10^{-14}\right)=\mathbf{1 . 5} \times \mathbf{1 0}^{-\mathbf{- 7}} \mathbf{~ M}
$$

b) What is the pH ?

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left(1.549 \times 10^{-7}\right)=6.80989=>6.81
$$

Water and the pH Scale

other " p " functions:

$$
\begin{array}{ll}
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & \mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}} \\
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right] & \mathrm{p} K_{\mathrm{b}}=-\log _{10} K_{\mathrm{b}} \\
\mathrm{p} K_{\mathrm{w}}=-\log _{10} K_{\mathrm{w}} & \mathrm{p} K_{\mathrm{sp}}=-\log _{10} K_{\mathrm{sp}}
\end{array}
$$

EX 7. Answer each of the following
a) $\mathrm{pH}=9.3,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$?
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-9.3}=5.01 \times 10^{-10}=>5 \times \mathbf{1 0}^{-10}$
b) 0.40 moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ is dissolved in a liter of water, pOH ?
$\mathrm{Ba}(\mathrm{OH})(\mathrm{s}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})=>0.80 \mathrm{M}\left[\mathrm{OH}^{-}\right]$

